“Bounded rationality”: the Grigori Rasputin of explanations for public perceptions of climate change risk

Another excerpt from Climate Science Communication and the Measurement Problem. 

4.  Is identity-protective cognition irrational?

The idea that “disbelief” in global warming is attributable to low “science literacy” is not the only explanation for public conflict over climate change that fails to survive an encounter with actual evidence. The same is true for the proposition that such controversy is a consequence of “bounded rationality.”

Indeed, the “bounded rationality thesis” (BRT) is probably the most popular explanation for public controversy over climate change.  Members of the public, BRT stresses, rely on “simplifying heuristics” that reflect the emotional vividness or intensity of their reactions to putative risk sources (Marx, Weber, Orlove, Leiserowitz, Krantz, Roncoli & Phillips 2007) but that often have “little correspondence to more objective measures of risk” (Weber 2006).  Those more objective measures, which “quantify either the statistical unpredictability of outcomes or the magnitude or likelihood of adverse consequences” (id.), are the ones that scientists employ. Using them demands an alternative “analytical processing” style that is acquired through scientific training and that “counteract[s] the emotionally comforting desire for confirmation of one’s beliefs” (Weber & Stern 2011).

BRT is very plausible, because it reflects a genuine and genuinely important body of work on the role that overreliance on heuristic (or “System 1”) reasoning as opposed to conscious, analytic (“System 2”) reasoning plays in all manner of cognitive bias (Frederick 2005; Kahneman 2003). But many more surmises about how the world works are plausible than are true (Watts 2011).  That is why it makes sense for science communication reasearchers, when they are offering advice to science communicators, to clearly identify accounts like BRT as “conjectures” in need of empirical testing rather than as tested “explanations.”

BRT generates a straightforward hypothesis about perception of climate change risks.  If the reason ordinary citizens are less concerned about climate change than they should be is that that they over-rely on heuristic, System 1 forms of reasoning, then one would expect climate concern to be higher among the individuals most able and disposed to use analytical, System 2 forms of reasoning .  In addition, because these concious, effortful forms of analytical reasoning are posited to “counteract the emotionally comforting desire for confirmation of one’s beliefs” (Weber & Stern 2011), one would also predict that polarization ought to dissipate among culturally diverse individuals whose proficiency in System 2 reasoning is comparably high.

This manifestly does not occur.  Multiple studies, using a variety of cognitive proficiency measures, have shown that individuals disposed to be skeptical of climate change become more so as their proficiency and disposition to use the forms of reasoning associated with System 2 increase (Hamilton, Cutler & Schaefer 2012; Kahan, Peters et al. 2012; Hamilton 2011).  In part for this reason—and in part because those who are culturally predisposed to be worried about climate change do become more alarmed as they become more proficient in analytical reasoning—polarization is in fact higher among individuals who are disposed to make use of System 2, analytic reasoning than it is among those disposed to rely on System 1, heuristic reasoning (Kahan, Peters et al. 2012).  This is the result observed among individuals who are highest in OSI, which in fact includes Numeracy and Cognitive Reflection Test items shown to predict resistance to System 1 cognitive biases (Figure 6).

The source of the public conflict over climate change is not too little rationality but in a sense too much. Ordinary members of the public are too good at extracting from information the significance it has in their everyday lives. What an ordinary person does—as consumer, voter, or participant in public discussions—is too inconsequential to affect either the climate or climate-change policymaking. Accordingly, if her actions in one of those capacities reflects a misunderstanding of the basic facts on global warming, neither she nor anyone she cares about will face any greater risk. But because positions on climate change have become such a readily identifiable indicator of ones’ cultural commitments, adopting a stance toward climate change that deviates from the one that prevails among her closest associates could have devastating consequences, psychic and material.  Thus, it is perfectly rational—perfectly in line with using information appropriately to achieve an important personal end—for that individual to attend to information on in a manner that more reliably connects her beliefs about climate change to the ones that predominate among her peers than to the best available scientific evidence (Kahan, 2012).

If that person happens to enjoy greater proficiency in the skills and dispositions necessary to make sense of such evidence, then she can simply use those capacities to do an even better job at forming identity-protective beliefs.  That people high in numeracy, cognitive reflection, and like dispositions use these abilities to find and credit evidence supportive of the position that predominates in their cultural group and to explain away the rest has been demonstrated experimentally (Kahan, Peters, Dawson & Slovic 2013; Kahan 2013b).   Proficiency in the sort of reasoning that is indeed indispensable for genuine science comprehension does not bring the beliefs of individuals on climate change into greater conformity with those of scientists; it merely makes those individuals’ beliefs even more indicators or measures of the relationship between those beliefs and the identities of those who share their defining commitments.

When “what do you believe” about a societal risk validly measures “who are you?,” or “whose side are you on?,” identity-protective cognition is not a breakdown in individual reason but a form of it. Without question, this style of reasoning is collectively disastrous: the more proficiently it is exercised by the citizens of a culturally diverse democratic society, the less likely they are to converge on scientific evidence essential to protecting them from harm. But the predictable tragedy of this outcome does not counteract the incentive individuals face to use their reason for identity protection.  Only changing what that question measures—and what answers to it express about people—can.


Frederick, S. Cognitive Reflection and Decision Making. Journal of Economic Perspectives 19, 25-42 (2005).

Hamilton, L.C. Education, politics and opinions about climate change evidence for interaction effects. Climatic Change 104, 231-242 (2011).

Hamilton, L.C., Cutler, M.J. & Schaefer, A. Public knowledge and concern about polar-region warming. Polar Geography 35, 155-168 (2012)

Kahan, D.M. Ideology, Motivated Reasoning, and Cognitive Reflection. Judgment and Decision Making 8, 407-424 (2013b).

Kahan, D.M., Peters, E., Dawson, E. & Slovic, P. Motivated Numeracy and Englightened Self Government. Cultural Cognition Project Working Paper No. 116  (2013).

Kahan, D.M., Peters, E., Wittlin, M., Slovic, P., Ouellette, L.L., Braman, D. & Mandel, G. The polarizing impact of science literacy and numeracy on perceived climate change risks. Nature Climate Change 2, 732-735 (2012).

Kahneman, D. Maps of Bounded Rationality: Psychology for Behavioral Economics. Am Econ Rev 93, 1449-1475 (2003).

Marx, S.M., Weber, E.U., Orlove, B.S., Leiserowitz, A., Krantz, D.H., Roncoli, C. & Phillips, J. Communication and mental processes: Experiential and analytic processing of uncertain climate information. Global Environ Chang 17, 47-58 (2007).

Weber, E. Experience-Based and Description-Based Perceptions of Long-Term Risk: Why Global Warming does not Scare us (Yet). Climatic Change 77, 103-120 (2006).

Weber, E.U. & Stern, P.C. Public Understanding of Climate Change in the United States. Am. Psychologist 66, 315-328 (2011).

Leave a Comment