Why the science of science communication needs to go back to highschool (& college; punctuated with visits to museum & science film-making studio)

I got to be opening act for former Freud expert & current stats legend Andrew Gelman (who focused mainly on stats but so as not to disappoint expectations of 85% of audience did mention Freud) at SENCER symposium in DC.

Of course, the audience really loved him b/c he spoke, among other things, about how commonplace yet weird it is that people who teach students about validity, reliability, sample selection & other essentials of empirical measurement never stop to examine whether the methods they are using to impart such knowledge are valid, reliable, informed by unbiased sample of observations etc.

Degrading and ultimately destroying this “self-measurement paradox” is at the core of SENCER’s mission!

And as is often happens when one goes to war with an evil & devious enemy, “mission creep” is setting in—which as far as I’m concerned is a very good thing in SENCER’s case.

An extension of one of the themes of SENCER’s summer institute, the session I did with Gelman was focused on how the self-measurement paradox affects self-government. Our democracy fails to make use of the best evidence it has on myriad issues—from the vaccination of adolescents for HPV to rising global temperatures—as a result of pervasive inattention to empirical evidence on how ordinary citizens come to know what’s known by science.

Or so I argued (slides here)—and I think Gelman was broadly in agreement, although he worried whether the thought-free, “which button do I push?” culture in the social sciences is rendering it incapable of helping us to gain any insight into these & other matters. . . .

For my part, though, I addressed the question essentially of where SENCER should be focusing its attention if it plans to “scale up” its focus from the science classroom, the museum, and the science programming studio to the democratic political arena.

My answer: the science classroom, science museum, and science programming studio!

The argument wasn’t any variant of the “knowledge deficit” thesis—the idea that the reason we see persistent political conflict on issues issues like climate change or gun control is that people lack either familiarity with the best evidence on such issues or the capacity to make sense of it.

Rather it was that the sites of formal and informal science education[1] are ideal laboratories for studying how to counteract the dynamics now stifling constructive pubic enagement with policy-relevant science.

The basis of this claim is the central thesis of The Measurement Problem.  The data reported in that paper support the conclusion that what people believe about whether human activity is really causing global warming don’t reveal what they know but express who they are.

In fact, the vast majority of climate change “believers” and climate change “skeptics” lack genuine comprehension of even the most elementary aspects of climate change science.  They actually get (believers and skeptics alike) that adding CO2 to the atmosphere heats the atmosphere—but think that CO2 emissions will kill plant life by stifling photosynthesis.  They all know (again, believers and skeptics) that climate scientists believe that increased global warming will result in coastal flooding—but mistakenly believe that climate scientists also think such warming will increase the incidence of skin cancer….

There is a small segment of highly science-literate citizens who can reliably identify what the prevailing scientific view is on the sources and consequences of climate change.  But they are no less polarized than the rest of society on whether human activity is causing global warming!

What people “believe” about global warming indicates, in a measurement sense, the sort of person they are in the same way that political party identification, religiosity, and cultural worldviews do.  The positions they take are, in fact, a way for them to convey their membership in & loyalty to affinity groups that are integral to their social status and to their simple everyday interactions.

Sadly, “who are you, whose side are you on?” is what popular political disoucrse on the “climate change question” measure, too.

Al Gore is right that that climate debate is  “a struggle for the soul of America” —and that is exactly the problem.  If we could disentangle the question “what do we know” from the question “whose side are you on,” then democratic engagement with the best evidence would be able to proceed.  Of course, at that point what to do would then still depend massively on what diverse people care about; but fashioning policy amidst differences of that sort is a perfectly ordinary part of democratic life.

But as I explained in the talk, this sort of reason-preempting entanglement of empirical facts in antagonistic cultural meanings is not new for science educators.  They’ve have to deal with it most conspicuously in trying to teach students about evolution.

What people “believe” about evolution likewise has zero correlation with what people know about the scientific evidence on the natural history of human beings or about any other insight human beings have acquired by use of science’s signature methods of observation, measurement, and inference.  “Belief” and “disbelief,” too, are expressions of identity.

But precisely because that’s what they are—precisely b/c free and reasoning people predictably, understandably use their reason to form and persist in positions that advance their stake in maintaining bonds with others who share their outlooks—the teaching of evolution is fraught.  I’m not talking about the politics of teaching evolution; that’s fraught, too, of course.  I’m talking about the challenge that a high school or college instructor faces in trying to make it possible for students who live in a world where positions on evolution express who they are to actually acquire knowledge and understanding of what it is science knows about the natural history of our species.

To their immense credit, science education researchers have used empirical methods to address this challenge.  What they’ve discovered is that a student’s “disbelief” in evolution in fact poses no barrier whatsoever to his or her learning of how random mutation and genetic variance combine with natural selection to propel adaptive changes in the forms of living creatures, including humans.

After mastering this material, the students who said they “disbelieved” still say they “disbelieve” in evolution.  That’s because what people say in response to the “do you believe in evolution” question doesn’t measure what they know; it measures who they are.

Indeed, the key to enabling disbelievers to learn the modern synthesis, this research shows, is to disentangle those two things—to make it plain to students that the point of the instruction isn’t to make them change their “beliefs but to impart knowledge; isn’t to make them into some other kind of person but to give them evidence along with the power of critical discernment essential to make of it what they will.

In my SENCER talk, I called this the “disentanglement principle”: those who are responsible for promoting comprehension of science have to create an environment in which free, reasoning people don’t have to choose between knowing what’s known and being who they are.

That’s going to be a huge challenge for classroom science teachers as well as for museum directors and documentary filmmakers and other science-communication professionals as they seek to enable the public—all of it, regardless of its members diverse identities—to understand what science knows about climate.

And they have shown, particularly in the science education domain, that they know the value of using valid empirical methods to implement the disentanglement principle.

SENCER, because it is already very experienced in facilitating empirical investigation aimed at improving the craft norms of science educators, should definitely be supporting science educators, formal and informal, in meeting the challenge of figuring out how to disentangle “who are you, what side are you on” from “what do we know” in the communication of climate science.

And it should be doing exactly that, I argued, as a means of satisfying SENCER’s own goal of combatting the “self-measurement paradox” in democratic politics!

The entanglement problem that science educators (formal and informal) face is exactly the one that is impeding constructive public engagement with climate change and other culturally polarizing issues that turn on policy-relevant science.  How to disentangle identity and knowledge is exactly what those who study science communication in democratic politics need to investigate by valid empirical means.

Valid empirical study of these dynamics, moreover, demands designs and measures that actually engage them.

Too much of the work being done on public opinion & climate change, in my view, lacks this sort of validity.  Indeed, the mistake of thinking that “moving the needle” on “belief in climate change” by furnishing people with “information,” including the existence of “scientific consensus” on global warming (something polarized citizens already know) is a consequence of over-reliance on public opinion surveys that presuppose flawed theories about the nature of public conflict in this area.

In a series of recent posts, I discussed the concept of external validity—the correspondence, essentially, between study designs and the sort of real-world conditions that those studies are supposed to be modeling.

Neil Stenhouse very usefully supplemented the series with a discussion of the “translation science” methods featured in public health and other disciplines to bridge the inevitable gap between externally valid lab studies and the real-world settings to which lab insights need to be adapted (indeed, disregard of this issue is another serious deficit in current science of science communication work).

The dynamics that must be understood to implement the “disentanglement principle” in science classrooms, science museums, and science documentary studios are, in my view, the same ones that must be understood to dispel cultural polarization over decision-relevant science in democratic politics.  Accordingly, empirical investigations conducted in those educational settings are the ones most likely to be both  externally valid and amenable to adaptation to democratic policymaking via field-baed “translation science” studies.

To illustrate this point, I discussed in my talk how the “disentanglement principle” has informed CCP field studies conducted on behalf of the Southeast Florida Climate Compact, whose success, I think, reflects the skill of its members in focusing citizens’ attention on the unifying question of “what do we know” & avoiding the divisive question “who are you, whose side are you on?” that dominates the national climate debate.

In sum, science of science communication researchres working on our democracy’s science communication problem need to go back to high school, and to college.  They should also be spending more time in museums and science filmmaking studios, collaborating with the professionals there on empirical investigation of efforts to implement the “disentanglement principle.”

Or at least how things now look to me.

What do you think?

[1] actually, I think the concept of “informal science education” is kind of goofy; science museums and science tv & internet programming respond to the public’s appetite to apprehend what’s known, not a societal need for extension courses!)

Leave a Comment